Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 101: 117649, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401458

RESUMO

Simple and scalable synthetic approach was used for the preparation of thirteen novel tacrine derivatives consisting of tacrine and N-aryl-piperidine-4-carboxamide moiety connected by a five-methylene group linker. An anti-Alzheimer disease (AD) potential of newly designed tacrine derivatives was evaluated against two important AD targets, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). In vitro pharmacological evaluation showed strong ChE inhibitory activity of all compounds, with IC50 values ranging from 117.5 to 455 nM for AChE and 34 to 324 nM for BuChE. As a representative of the series with the best cytotoxicity / ChE inhibitory activity ratio, expressed as the selectivity index (SI), 2-chlorobenzoyl derivative demonstrated mixed-type inhibition on AChE and BuChE, suggesting binding to both CAS and PAS of the enzymes. It also exhibited antioxidant capacity and neuroprotective potential against amyloid-ß (Aß) toxicity in the culture of neuron-like cells. In-depth computational analysis corroborated well with in vitro ChE inhibition, illuminating that all compounds exhibit significant potential in targeting both enzymes. Molecular dynamics (MD) simulations revealed that 2-chlorobenzoyl derivative, created complexes with AChE and BuChE that demonstrated sufficient stability throughout the observed MD simulation. Computationally predicted ADME properties indicated that these compounds should have good blood-brain barrier (BBB) permeability, an important factor for CNS-targeting drugs. Overall, all tested compounds showed promising pharmacological behavior, highlighting the multi-target potential of 2-chlorobenzoyl derivative which should be further investigated as a new lead in the drug development process.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Humanos , Acetilcolinesterase/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Tacrina/química , Clorobenzoatos/química , Clorobenzoatos/farmacologia
2.
Molecules ; 26(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34279368

RESUMO

The purpose of this study was to identify new metal-based anticancer drugs; to this end, we synthesized two new copper(II) complexes, namely [Cu(ncba)4(phen)] (1) and [Cu(ncba)4(bpy)] (2), comprised 4-chloro-3-nitrobenzoic acid as the main ligand. The single-crystal XRD approach was employed to determine the copper(II) complex structures. Binding between these complexes and calf thymus DNA (CT-DNA) and human serum albumin (HSA) was explored by electronic absorption, fluorescence spectroscopy, and viscometry. Both complexes intercalatively bound CT-DNA and statically and spontaneously quenched DNA/HSA fluorescence. A CCK-8 assay revealed that complex 1 and complex 2 had substantial antiproliferative influences against human cancer cell lines. Moreover, complex 1 had greater antitumor efficacy than the positive control cisplatin. Flow cytometry assessment of the cell cycle demonstrated that these complexes arrested the HepG2 cell cycle and caused the accumulation of G0/G1-phase cells. The mechanism of cell death was elucidated by flow cytometry-based apoptosis assays. Western blotting revealed that both copper(II) complexes induced apoptosis by regulating the expression of the Bcl-2(Bcl-2, B cell lymphoma 2) protein family.


Assuntos
Antineoplásicos/síntese química , Clorobenzoatos/química , Complexos de Coordenação/síntese química , Cobre/química , Albumina Sérica Humana/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/farmacologia , DNA/química , Células Hep G2 , Humanos
3.
J Am Soc Mass Spectrom ; 32(8): 2196-2205, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34170677

RESUMO

Fatty acid esters of hydroxy fatty acids (FAHFAs) are a new class of endogenous lipids with promising physiological functions in mammals. We previously introduced a new type of lipids to this family called short-chain fatty acid esters of hydroxy fatty acids (SFAHFAs), branching specific to the C2 carbon of a long-chain fatty acid (≥C20). In this study, we discovered a homologous series of SFAHFAs comprising C16-C26 hydroxy fatty acids esterified with short-chain fatty acids (C2-C5) in mouse colon contents. The detected SFAHFAs were characterized by high-resolution mass spectrometry with MSn analysis. The double-bond position of monounsaturated SFAHFAs was determined by the epoxidation reaction of samples with m-chloroperoxybenzoic acid and their MSn analysis. Further, the measurement of SFAHFA concentration in the colon contents of mice infected with influenza A/Puerto Rico/8/34 (H1N1; PR8) virus revealed a significant increase in their levels compared to native control. A strong correlation was observed between hydroxy fatty acid and SFAHFAs. Detection, characterization, and profiling of these new SFAHFA levels in relation with pandemic H1N1; PR8 influenza virus will contribute to the in-depth study of their function and metabolism.


Assuntos
Colo/química , Ácidos Graxos Voláteis/análise , Ácidos Graxos Voláteis/química , Espectrometria de Massas/métodos , Infecções por Orthomyxoviridae/metabolismo , Animais , Clorobenzoatos/química , Colo/metabolismo , Colo/virologia , Compostos de Epóxi/química , Ésteres/análise , Ésteres/química , Ácidos Graxos Voláteis/metabolismo , Vírus da Influenza A Subtipo H1N1/patogenicidade , Masculino , Camundongos Endogâmicos C57BL , Análise Multivariada
4.
Bioorg Med Chem Lett ; 45: 128139, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34048880

RESUMO

Jumonji-C (JmjC) domain-containing 7 (JMJD7), which is a 2-oxoglutarate (2OG)-dependent oxygenase, has been demonstrated to play an important role in the occurrence and development of a number of diseases, particularly cancer. Discovery of JMJD7 inhibitors is thus of great importance. Herein consensus docking/scoring strategy and bioactivity evaluation were used to identify JMJD7 inhibitors from various chemical databases. Seven active compounds were retrieved. The most potent compound, Cpd-3, showed an IC50 value of 6.62 µM against JMJD7. Further biophysical assays confirmed that Cpd-3 could efficiently bind to JMJD7 in vitro. Flexible docking was used to predict the binding mode of Cpd-3 with JMJD7. In a cellular assay, Cpd-3 displayed good inhibitory activity against cancer cell lines expressing a high level of JMJD7. As far as we know, Cpd-3 is the first JMJD7 inhibitor reported so far. Overall, this study established a good starting point for drug discovery targeting JMJD7.


Assuntos
Antineoplásicos/farmacologia , Clorobenzoatos/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Clorobenzoatos/síntese química , Clorobenzoatos/química , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade
5.
J Am Chem Soc ; 142(45): 19239-19248, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33111517

RESUMO

The Ni-catalyzed oxidation of unactivated alkanes, including the oxidation of polyethylenes, by meta-chloroperbenzoic acid (mCPBA) occur with high turnover numbers under mild conditions, but the mechanism of such transformations has been a subject of debate. Putative, high-valent nickel-oxo or nickel-oxyl intermediates have been proposed to cleave the C-H bond, but several studies on such complexes have not provided strong evidence to support such reactivity toward unactivated C(sp3)-H bonds. We report mechanistic investigations of Ni-catalyzed oxidations of unactivated C-H bonds by mCPBA. The lack of an effect of ligands, the formation of carbon-centered radicals with long lifetimes, and the decomposition of mCPBA in the presence of Ni complexes suggest that the reaction occurs through free alkyl radicals. Selectivity on model substrates and deuterium-labeling experiments imply that the m-chlorobenzoyloxy radical derived from mCPBA cleaves C-H bonds in the alkane to form an alkyl radical, which subsequently reacts with mCPBA to afford the alcohol product and regenerate the aroyloxy radical. This free-radical chain mechanism shows that Ni does not cleave the C(sp3)-H bonds as previously proposed; rather, it catalyzes the decomposition of mCPBA to form the aroyloxy radical.


Assuntos
Carbono/química , Hidrogênio/química , Níquel/química , Catálise , Clorobenzoatos/química , Complexos de Coordenação/química , Radicais Livres/química , Peróxido de Hidrogênio/química , Ferro/química , Ligantes , Oxirredução , Estereoisomerismo
6.
Acta Crystallogr C Struct Chem ; 76(Pt 8): 746-752, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32756037

RESUMO

A series of five binary complexes, i.e. three cocrystals and two molecular salts, using 2-chloro-4-nitrobenzoic acid as a coformer have been produced with five commonly available compounds, some of pharmaceutical relevance, namely, 2-chloro-4-nitrobenzoic acid-isonicotinamide (1/1), C7H4ClNO4·C6H6N2O, 2-chloro-4-nitrobenzoic acid-3,3-diethylpyridine-2,4(1H,3H)-dione (2/1), 2C7H4ClNO4·C9H13NO2, 2-chloro-4-nitrobenzoic acid-pyrrolidin-2-one (1/1), C7H4ClNO4·C4H7NO, 2-carboxypiperidinium 2-chloro-4-nitrobenzoate, C6H12NO2-·C7H3ClNO4-, and (2-hydroxyethyl)ammonium 2-chloro-4-nitrobenzoate, C2H8NO+·C7H3ClNO4-. The coformer falls under the classification of a `generally regarded as safe' compound. All five complexes make use of a number of different heteromeric hydrogen-bonded interactions. Intermolecular potentials were evaluated using the CSD-Materials module.


Assuntos
Clorobenzoatos/química , Sais/química , Cristalografia por Raios X , Preparações Farmacêuticas
7.
Int J Mol Sci ; 21(11)2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466601

RESUMO

A series of new tetrahydroacridine and 3,5-dichlorobenzoic acid hybrids with different spacers were designed, synthesized, and evaluated for their ability to inhibit both cholinesterase enzymes. Compounds 3a, 3b, 3f, and 3g exhibited selective butyrylcholinesterase (EqBuChE) inhibition with IC50 values ranging from 24 to 607 nM. Among them, compound 3b was the most active (IC50 = 24 nM). Additionally, 3c (IC50 for EeAChE = 25 nM and IC50 for EqBuChE = 123 nM) displayed dual cholinesterase inhibitory activity and was the most active compound against acetylcholinesterase (AChE). Active compound 3c was also tested for the ability to inhibit Aß aggregation. Theoretical physicochemical properties of the compounds were calculated using ACD Labs Percepta and Chemaxon. A Lineweaver-Burk plot and docking study showed that 3c targeted both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. Moreover, 3c appears to possess neuroprotective activity and could be considered a free-radical scavenger. In addition, 3c did not cause DNA damage and was found to be less toxic than tacrine after oral administration; it also demonstrated little inhibitory activity towards hyaluronidase (HYAL), which may indicate that it possesses anti-inflammatory properties. The screening for new in vivo interactions between 3c and known receptors was realized by yeast three-hybrid technology (Y3H).


Assuntos
Doença de Alzheimer/tratamento farmacológico , Clorobenzoatos/química , Inibidores da Colinesterase/síntese química , Fármacos Neuroprotetores/síntese química , Tacrina/análogos & derivados , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Domínio Catalítico , Linhagem Celular Tumoral , Células Cultivadas , Inibidores da Colinesterase/efeitos adversos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Colinesterases/química , Colinesterases/metabolismo , Sequestradores de Radicais Livres/efeitos adversos , Sequestradores de Radicais Livres/síntese química , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/uso terapêutico , Humanos , Hialuronoglucosaminidase/antagonistas & inibidores , Camundongos , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/efeitos adversos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ligação Proteica , Multimerização Proteica/efeitos dos fármacos
8.
J Phys Chem Lett ; 11(3): 1030-1037, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31967828

RESUMO

Very recently, the bulk synthesis of cyclo-N5- from arylpentazole through the treatment with m-chloroperbenzonic acid (m-CPBA) and ferrous bisglycinate ([Fe(Gly)2]) (Zhang, C., et al. Science 2017, 355, 374) has greatly promoted the application of pentazolate anion as a novel high-performance energetic material. Yet the mechanism for this reaction is still unexplored. Herein we perform mechanistic studies on the selective C-N bond cleavage in arylpentazole by using density functional theory methods. The direct C-N bond activation by m-CPBA was computed to be kinetically inaccessible. Instead, the oxidation of [Fe(Gly)2] by m-CPBA is much favorable, which leads to the generation of a high-valent iron(IV)-oxo product. The Fe(IV)-oxo intermediate has been examined by UV-vis absorption spectra experiments and further verified by excited-state calculations. It is found that the Fe(IV)-oxo serves as the key intermediate for the C-N bond activation of arylpentazole and the cyclo-N5- generation. Our calculations clarified the key mechanistic details of the cyclo-N5- generation, and the factors that affect the production yield are further discussed.


Assuntos
Clorobenzoatos/química , Compostos Ferrosos/química , Glicina/química , Modelos Moleculares , Pentilenotetrazol/química , Carbono/química , Nitrogênio/química , Oxirredução , Teoria Quântica , Espectrofotometria , Termodinâmica
9.
Molecules ; 25(1)2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935934

RESUMO

Aryl benzoates are compounds of high importance in organic synthesis. Herein, we report the iron-catalyzed C(sp2)-C(sp3) Kumada cross-coupling of aryl chlorobenzoates with alkyl Grignard reagents. The method is characterized by the use of environmentally benign and sustainable iron salts for cross-coupling in the catalytic system, employing benign urea ligands in the place of reprotoxic NMP (NMP = N-methyl-2-pyrrolidone). It is notable that high selectivity for the cross-coupling is achieved in the presence of hydrolytically-labile and prone to nucleophilic addition phenolic ester C(acyl)-O bonds. The reaction provides access to alkyl-functionalized aryl benzoates. The examination of various O-coordinating ligands demonstrates the high activity of urea ligands in promoting the cross-coupling versus nucleophilic addition to the ester C(acyl)-O bond. The method showcases the functional group tolerance of iron-catalyzed Kumada cross-couplings.


Assuntos
Clorobenzoatos/química , Compostos de Ferro/química , Ferro/química , Catálise , Estrutura Molecular
10.
J Am Chem Soc ; 141(43): 17236-17244, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31617707

RESUMO

In a possibly biomimetic fashion, formally copper(III)-oxygen complexes LCu(III)-OH (1) and LCu(III)-OOCm (2) (L2- = N,N'-bis(2,6-diisopropylphenyl)-2,6-pyridinedicarboxamide, Cm = α,α-dimethylbenzyl) have been shown to activate X-H bonds (X = C, O). Herein, we demonstrate similar X-H bond activation by a formally Cu(III) complex supported by the same dicarboxamido ligand, LCu(III)-O2CAr1 (3, Ar1 = meta-chlorophenyl), and we compare its reactivity to that of 1 and 2. Kinetic measurements revealed a second order reaction with distinct differences in the rates: 1 reacts the fastest in the presence of O-H or C-H based substrates, followed by 3, which is followed by (unreactive) 2. The difference in reactivity is attributed to both a varying oxidizing ability of the studied complexes and to a variation in X-H bond functionalization mechanisms, which in these cases are characterized as either a hydrogen-atom transfer (HAT) or a concerted proton-coupled electron transfer (cPCET). Select theoretical tools have been employed to distinguish these two cases, both of which generally focus on whether the electron (e-) and proton (H+) travel "together" as a true H atom, (HAT), or whether the H+ and e- are transferred in concert, but travel between different donor/acceptor centers (cPCET). In this work, we reveal that both mechanisms are active for X-H bond activation by 1-3, with interesting variations as a function of substrate and copper functionality.


Assuntos
Cobre/química , Hidrogênio/química , Clorobenzoatos/química , Cristalografia por Raios X , Teoria da Densidade Funcional , Eletrólitos/química , Transporte de Elétrons , Modelos Químicos , Oxigênio/química , Prótons , Espectrofotometria Ultravioleta
11.
Biomacromolecules ; 20(10): 3767-3777, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31483619

RESUMO

Although nanocarriers containing perfluorocarbon (PFC) have been widely investigated as an ultrasound (US) imaging agent and a high intensity focused ultrasound (HIFU) agent, these carriers have suffered from low stability and biocompatibility limiting their further biomedical applications. Here, we developed surface cross-linked polymer nanodroplets as a HIFU therapeutic agent guided by bimodal photoacoustic (PA) and US imaging. Pluronic F127 was reacted with 4-nitrophenyl chloroformate (NPC) and mixed with naphthalocyanine (Nc) in dichloromethane, which was added into the aqueous solution of amine-functionalized six-arm-branched poly(ethylene glycol) (PEG) to form an oil-in-water emulsion for the cross-linking reaction between the terminal NPC of Pluronic F127 and the primary amine of six-arm PEG. The resulting solution was sonicated with liquid perfluorohexane (PFH) to prepare PEG cross-linked Pluronic F127 nanoparticles encapsulating Nc and PFH (Nc/PFH@PCPN). Nc/PFH@PCPN appeared to be stable without any coalescence or vaporization in the physiological condition. Upon the application of HIFU, Nc/PFH@PCPN was vaporized and showed increased US intensity for 180 min. The Nc dye in the nanodroplets enabled the stable encapsulation of PFH and the bimodal US/PA imaging. In vivo PA/US image-guided HIFU ablation therapy confirmed that the nanodroplets increased the cavitation effect, induced necrosis and apoptosis of tumor cells, and reduced tumor growth significantly for 12 days. Taken together, the multifunctional Nc/PFH@PCPN was successfully developed as a new platform for PA/US image-guided HIFU therapy.


Assuntos
Meios de Contraste/química , Tratamento por Ondas de Choque Extracorpóreas/métodos , Fluorocarbonos/química , Nanocápsulas/química , Porfirinas/química , Ultrassonografia/métodos , Animais , Bovinos , Clorobenzoatos/química , Meios de Contraste/administração & dosagem , Fluorocarbonos/administração & dosagem , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Técnicas Fotoacústicas/métodos , Poloxâmero/química , Polietilenoglicóis/química , Porfirinas/administração & dosagem , Volatilização
12.
Anal Chem ; 91(3): 1791-1795, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30608661

RESUMO

Lipids are highly diverse biomolecules associated with several biological functions including structural constituent, energy storage, and signal transduction. It is essential to characterize lipid structural isomers and further understand their biological roles. Unsaturated lipids contain one or multiple carbon-carbon double bonds. Identifying double bond position presents a major challenge in unsaturated lipid characterization. Recently, several advancements have been made for double bond localization by mass spectrometry (MS) analysis. However, many of these studies require complex chemical reactions or advanced mass spectrometers with special fragmentation techniques, which limits the application in lipidomics study. Here, an innovative meta-chloroperoxybenzoic acid ( m-CPBA) epoxidation reaction coupling with collision-induced dissociation (CID)-MS/MS strategy provides a new tool for unsaturated lipidomics analysis. The rapid epoxidation reaction was carried out by m-CPBA with high specificity. Complete derivatization was achieved in minutes without overoxidized byproduct. Moreover, diagnostic ion pair with 16 Da mass difference indicated localization of carbon-carbon double bond in MS/MS spectra. Multiple lipid classes were evaluated with this strategy and generated abundant fragments for structural analysis. Unsaturated lipid analysis of yeast extract using this strategy took less than 30 min, demonstrating the potential for high-throughput lipidomics analysis by this approach. This study opens a door for high throughput unsaturated lipid analysis with minimal requirement for instrumentation, which could be widely applied in lipidomics analysis.


Assuntos
Fosfatidilcolinas/análise , Fosfatidilcolinas/química , Clorobenzoatos/química , Ácidos Graxos Insaturados/análise , Ácidos Graxos Insaturados/química , Isomerismo , Lipidômica/métodos , Oxirredução , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Leveduras/química
13.
Bioorg Chem ; 81: 367-372, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30196206

RESUMO

In this study, the consumption of 4-bromobenzoic acid and 4-chlorobenzoic acid by the fungus Penicillium brasilianum, an endophyte from Melia azedarach is evaluated. This fungus metabolizes these halobenzoic acids to produce three new brominated compounds, which have been isolated and characterized, and three new chlorinated derivatives identified by HRMS. Among these products, (4-bromobenzoyl)proline has been also chemically synthesized and employed in biological assays, thus providing insights for the elucidation of the defense mechanism of P. brasilianum towards these halobenzoic acids.


Assuntos
Antifúngicos/metabolismo , Bromobenzoatos/metabolismo , Clorobenzoatos/metabolismo , Endófitos/metabolismo , Melia azedarach/microbiologia , Penicillium/metabolismo , Antifúngicos/química , Biotransformação , Bromobenzoatos/química , Clorobenzoatos/química , Endófitos/química , Halogenação , Melia azedarach/metabolismo , Simulação de Acoplamento Molecular , Penicillium/química , Penicillium/enzimologia
14.
J Hazard Mater ; 360: 204-213, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30099363

RESUMO

Given the need for innovations in advanced oxidation processes to deal with challenges such as OH scavenging, this paper addresses the removal of pharmaceuticals with a large variety in ozone reactivity (kO3 = 0.15-3 × 105 M-1s-1) by use of the novel ozone-activated peroxymonosulfate (O3/PMS) process. A clear improvement in removal efficiency (up to 5 times higher) is noticed as a result of the generation of SO4- radicals, mainly for slow-ozone reacting compounds (kO3 ≤ 250 M-1s-1) and in the presence of a OH scavenger. Depending on the target compound, SO4- are assessed to contribute for 50-90% to the overall removal of the micropollutants, both in single-compound and mixture experiments. Ozone-based PMS activation occurs at neutral to alkaline pH and, in the presence of a OH scavenger, removal efficiencies during O3/PMS are up to 3 times higher than with the O3/H2O2 process. In optimizing the O3/PMS process, a trade-off has to made between the desired removal and the PMS:O3 ratio. A molar ratio of 1:10 already results in a clear benefit compared to the ozonation process. Further increase of the PMS content up to a 1:1 ratio improved the removal by an additional factor of 1.3-1.5.


Assuntos
Peróxidos/química , Preparações Farmacêuticas/química , Poluentes Químicos da Água/química , Atrazina/química , Clorobenzoatos/química , Oxirredução , Ozônio/química , Purificação da Água/métodos
15.
J Environ Manage ; 224: 340-349, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30056353

RESUMO

The destruction of the herbicide chloramben in 0.050 M Na2SO4 solutions at natural pH has been studied by photoelectro-Fenton with UVA light (PEF). The trials were carried out in a cell equipped with an air-diffusion cathode for H2O2 generation and different electrocatalytic anodes, namely active IrO2-based and RuO2-based electrodes and non-active boron-doped diamond (BDD) and PbO2 ones. Similar removal rates were found regardless of the anode nature because the herbicide was mainly oxidized by OH formed from Fenton's reaction, which was enhanced by UVA-induced photo-Fenton reaction. The use of an IrO2-based anode led to almost total mineralization at high current density, as also occurred with the powerful BDD anode, since photoactive intermediates originated from OH-mediated oxidation were degraded under irradiation with UVA light. The good performance of the IrO2-based anode in PEF was confirmed at different current densities and herbicide concentrations. The presence of Cl- in the medium caused a slight deceleration of herbicide removal as well as mineralization inhibition, owing to the production of active chlorine with consequent formation of persistent chloroderivatives. Seven aromatic products along with oxalic and oxamic acids were identified in sulfate medium. Five aromatic derivatives were detected in Cl--containing matrix, corroborating the generation of organochlorine compounds. In secondary effluent, larger mineralization was achieved by PEF with a BDD anode due to its high oxidation ability to destroy the chloroderivatives, although an acceptable performance was also obtained using an IrO2-based anode.


Assuntos
Clorobenzoatos/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água , Boro , Clorobenzoatos/química , Diamante , Eletroquímica , Eletrodos , Herbicidas , Peróxido de Hidrogênio , Oxirredução , Água , Poluentes Químicos da Água/química
16.
Rapid Commun Mass Spectrom ; 32(11): 906-912, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29575501

RESUMO

RATIONALE: Halogenated benzoic acids occur in the environment due to their widespread agricultural and pharmaceutical use. Compound-specific stable isotope analysis (CSIA) has developed over the last decades for investigation of in situ transformation and reaction mechanisms of environmental pollutants amenable by gas chromatography (GC). As polar compounds are unsuitable for GC analysis we developed a method to perform liquid chromatography (LC)/CSIA for halogenated benzoates. METHODS: LC/isotope ratio mass spectrometry (IRMS) utilizing a LC-Surveyor pump coupled to a MAT 253 isotope ratio mass spectrometer via a LC-Isolink interface was applied. For chromatographic separation a YMC-Triart C18 column and a potassium hydrogen phosphate buffer (150 mM, pH 7.0, 40°C, 200 µL mL-1 ) were used, followed by wet oxidation deploying 1.5 mol L-1 ortho-phosphoric acid and 200 g L-1 sodium peroxodisulfate at 75 µL mL-1 . RESULTS: Separation of benzoate and halogenated benzoates could be achieved in less than 40 min over a concentration range of 2 orders of magnitude. Under these conditions the dehalogenation reaction of Thauera chlorobenzoica 3CB-1T using 3-chloro-, 3-bromo- and 4-chlorobenzoic acid was investigated resulting in inverse carbon isotope fractionation for meta-substituted benzoic acids and minor normal fractionation for para-substituted benzoic acids. Together with the respective growth rates this led to the assumption that dehalogenation of para-halobenzoic acids follows a different mechanism from that of meta-halobenzoic acids. CONCLUSIONS: A new LC/IRMS method for the quantitative determination of halogenated benzoates was developed and used to investigate the in vivo transformation pathways of these compounds, providing some insights into degradation and removal of these widespread compounds by T. chlorobenzoica 3CB-1T .


Assuntos
Benzoatos/análise , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Thauera/metabolismo , Benzoatos/química , Biodegradação Ambiental , Isótopos de Carbono , Clorobenzoatos/análise , Clorobenzoatos/química , Clorobenzoatos/metabolismo , Poluentes Ambientais/análise , Poluentes Ambientais/química , Poluentes Ambientais/metabolismo , Halogenação , Reprodutibilidade dos Testes , Thauera/química
17.
J Oleo Sci ; 67(1): 55-66, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29238023

RESUMO

Behaviors of cationic and nonionic mixed micelles in the form of hexadecyltrimethylammonium bromide (HDABr) and hexadecyltrimethylammonium bromide-Polyethylene glycol hexadecyl ether (C16E20), in the presence of inert salts (NaBr and 3,5-dichlorosodium benzoate), by the use of reaction probe between Pp and ionized PhSH (Pp = piperidine and PhSH = phenyl salicylate), has been reported in this work. The values of RXBr (RXBr denotes ion exchange constants obtained in the presence of micelles of different structural features) or KXBr (KXBr denotes ion exchange constants obtained in the presence of micelles of the same structural features) for 3,5-Cl2C6H3CO2- were almost the same at three different [HDABr]T (0.006, 0.010 and 0.015 M). The average value of RXBr or KXBr determined, in the presence of pure HDABr micelles, using semi empirical kinetic (SEK) method appeared to be almost 2½-fold larger (RXBr or KXBr = 198) than that in the presence of mixed HDABr-C16E20 micelles (RXBr or KXBr = 78). Rheological measurements indicated the existence of wormlike/twisted micelles and vesicle at 0.015 M pure HDABr, various [3,5-Cl2C6H3CO2Na], and 25 and 35℃ whereas there were evidence of only spherical micelles in the presence of mixed HDABr-C16E20 ([HDABr]T = 0.015 M and [C16E20]T = 0.006 M) at both temperatures.


Assuntos
Brometos/química , Clorobenzoatos/química , Micelas , Piperidinas/química , Salicilatos/química , Compostos de Sódio/química , Catálise , Cetomacrogol/química , Cinética , Compostos de Amônio Quaternário/química , Reologia
18.
Water Res ; 130: 234-242, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29227872

RESUMO

While the presence of iron is generally not seen as favorable for UV-based treatment systems due to lamp fouling and decreased UV transmittance, we show that low levels of iron can lead to improvements in the abatement of chemicals in the UV-hydrogen peroxide advanced oxidation process. The oxidation potential of an iron-assisted UV/H2O2 (UV254 + H2O2 + iron) process was evaluated at neutral pH using iron levels below USEPA secondary drinking water standards (<0.3 mg/L). Para-chlorobenzoic acid (pCBA) was used as a hydroxyl radical (HO) probe to quantify HO steady state concentrations. Compounds degraded by different mechanisms including, carbamazepine (CBZ, HO oxidation) and N-nitrosodimethylamine (NDMA, direct photolysis), were used to investigate the effect of iron on compound degradation for UV/H2O2 systems. The effects of iron species (Fe2+ and Fe3+), iron concentration (0-0.3 mg/L), H2O2 concentration (0-10 mg/L) and background water matrix (low-carbon tap (LCT) and well water) on HO production and compound removal were examined. Iron-assisted UV/H2O2 efficiency was most influenced by the target chemical and the water matrix. Added iron to UV/H2O2 was shown to increase the steady-state HO concentration by approximately 25% in all well water scenarios. While CBZ removal was unchanged by iron addition, 0.3 mg/L iron improved NDMA removal rates in both LCT and well water matrices by 15.1% and 4.6% respectively. Furthermore, the combination of UV/Fe without H2O2 was also shown to enhance NDMA removal when compared to UV photolysis alone indicating the presence of degradation pathways other than HO oxidation.


Assuntos
Carbamazepina , Dimetilnitrosamina , Peróxido de Hidrogênio/química , Ferro/química , Raios Ultravioleta , Poluentes Químicos da Água , Purificação da Água/métodos , Carbamazepina/química , Carbamazepina/efeitos da radiação , Clorobenzoatos/química , Dimetilnitrosamina/química , Dimetilnitrosamina/efeitos da radiação , Radical Hidroxila/química , Oxirredução , Fotólise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/efeitos da radiação
19.
J Mass Spectrom ; 53(1): 30-38, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28929601

RESUMO

Isomeric chlorobenzoyl cations (m/z 139), under collision-induced experiments, fragment identically. Chlorobenzoyl cations can be efficiently converted into cholorophenol radical cations by the reaction with methanol in the ion trap analyzer under CI-MSn conditions. The substitution of the carbonyl group with a hydroxyl moiety is able to induce an ortho effect, which is absent in the startingortho-chlorobenzoyl cation. This transformation could be useful to recognize ortho-chlorinated benzoyl derivatives without the need of MS spectrum comparison of the whole set of isomers. The method reported in this study could be applicable to biologically active molecules that dissociate to form the chlorobenzoyl cations under CI or CI collision-induced dissociation conditions, such as indomethacin, the degradation products from the insect growth regulator 1-(2-chlorobenzoyl)-3-(4-chlorophenyl) urea, and lorazepam.


Assuntos
Ácido Benzoico/química , Clorobenzoatos/análise , Fenóis/química , Cátions/química , Clorobenzoatos/química , Cromatografia Líquida de Alta Pressão/métodos , Isomerismo , Metanol/química , Espectrometria de Massas por Ionização por Electrospray
20.
Chemosphere ; 188: 304-311, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28888118

RESUMO

Electrochemical oxidation (EO) is an advanced oxidation process for water treatment to mineralize organic contaminants. While proven to degrade a range of emerging pollutants in water, less attention has been given to quantify the effect of operational variables such applied current density and pollutant concentration on efficiency and energy requirements. Particular figures of merit were mineralization current efficiency (MCE) and electrical energy per order (EEO). Linear increases of applied current exponentially decreased the MCE due to the enhancement of undesired parasitic reactions that consumed generated hydroxyl radical. EEO values ranged from 39.3 to 331.8 kW h m-3 order-1. Increasing the applied current also enhanced the EEO due to the transition from kinetics limited by current to kinetics limited by mass transfer. Further increases in current did not influence the removal rate, but it raised the EEO requirement. The EEO requirement diminished when decreasing initial pollutant loading with the increase of the apparent kinetic rate because of the relative availability of oxidant per pollutant molecule in solution at a defined current. Oxidation by-products released were identified, and a plausible degradative pathway has been suggested.


Assuntos
Clorobenzoatos/química , Técnicas Eletroquímicas/métodos , Recuperação e Remediação Ambiental/métodos , Poluentes Químicos da Água/química , Purificação da Água/métodos , Boro/química , Diamante/química , Eletrodos , Fontes Geradoras de Energia , Radical Hidroxila/química , Cinética , Oxidantes , Oxirredução , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...